Mean Angle

To calculate the mean angle $(\bar{\theta})$, we first convert all our angles from degrees to radians:

$$
\theta_{\text {radians }}=\theta_{\text {degrees }} \times \frac{\pi}{180}
$$

Next, we calculate the average cosine (X) and sine (Y) for each angle:

$$
\begin{aligned}
& X=\frac{1}{n} \sum_{i=1}^{n} \cos \theta_{i} \\
& Y=\frac{1}{n} \sum_{i=1}^{n} \sin \theta_{i}
\end{aligned}
$$

Then, we calculate the mean angle $(\bar{\theta})$ using a slightly different correction depending on the quadrant of the mean:

- If X and Y are both positive, then

$$
\bar{\theta}=\tan ^{-1}\left(\frac{Y}{X}\right)
$$

- If X is positive and Y is negative, then

$$
\bar{\theta}=2 \pi-\tan ^{-1}\left(\frac{Y}{X}\right)
$$

- If X is negative and Y is positive, then

$$
\bar{\theta}=\pi-\tan ^{-1}\left(\frac{Y}{X}\right)
$$

- If X and Y are both negative, then

$$
\bar{\theta}=\pi+\tan ^{-1}\left(\frac{Y}{X}\right)
$$

Now you can convert $\bar{\theta}$ from radians back to degrees:

$$
\bar{\theta}_{\text {degrees }}=\bar{\theta}_{\text {radians }} \times \frac{180}{\pi}
$$

Rayleigh's Test

Rayleigh's Z test will determine whether a set of angles is random ($p>0.05$) or has a preferred direction (oriented, $\mathrm{p}<0.05$).
We start by calculating X and Y the same as above for the mean angle. Then, we calculate the length of the mean vector (r) :

$$
r=\sqrt{X^{2}+Y^{2}}
$$

r can be between zero and 1 , zero being all angles are equally distributed around the circle, and 1 being all the angles are exactly the same.

Next, we calculate Rayleigh's test statistic z using the sample size n :

$$
z=n r^{2}
$$

Finally, use the look-up table on the next page to find whether or not our z is larger than the critical value for significance. Find the row that corresponds to n and the column the corresponds with a probability of 0.05 . If your z is greater than this value in the table, then your p is less than 0.05 and you reject randomness and conclude the samples have a preferred direction.

Critical z Values for the Rayleigh's Test
Taken from Zar, 1981 Table B. 32

n	$\alpha: 0.5 .0$	0.20	0.10	0,0.5	0.0.2	0,0,1	0.0,05	0,0,02	0.0.01
6	0.7.34	1.6.39	2. 2.74	2.8,65	3. 5.76	4.0,58	4.4,91	4.9,85	5. 2.97
7	0.7 .27	1.6.34	2. 2.78	2.885	3.6,27	4.1.43	4.6,17	5.1,81	5.5,56
8	0.7 .23	1.6.31	2. 2.81	2.899	3.6.65	4. 2,05	4.7.10	5.3,22	5.7.43
9	0.7.19	1.6,28	2.2,83	2.9,10	3.694	4.2,52	4.7.80	5.4.30	5.8,85
10	0.7.17	1.6.26	2. 2,85	2.9,19	3.7.16	4.289	4.8,35	5.5,14	5.9,96
11	0.715	1.6.25	2. 2.87	2.9,26	3.7.35	4.3,19	4.8,79	5.5,82	6. 0.85
12	0.7 .13	1.6.23	2.2,88	2.9,32	3.7 .50	4.344	4.9,16	5.6,38	6.158
13	0.7 .11	1.6.22	2. 2.89	2.9,37	3.7 .63	4.3.65	4.9,47	5.6,85	6.219
14	0.710	1.6.21	2.290	2.9,41	3.7 .74	4.3,83	4.9,73	5.7.25	6. 271
15	0.7 .09	1.6,20	2. 2.91	2.945	3.7.84	4.3,98	4.9,96	5.7 .59	6.3.16
16	0.7 .08	1.6,20	2. 2.92	2.9,48	3.7.92	4.4.12	5. 0.15	5. 7.89	6. 3.54
17	0.7 .07	1.6.19	2. 2.92	2.9,51	3.7,99	4.4,23	5.0 .33	5.8,15	6. 3,88
18	0.7.06	1.6.19	2. 2,93	2.954	3.8,06	4.4,34	5.0,48	5.8 .38	6,4,18
19	0.7 .05	1.6.18	2. 2,93	2.9,56	3.8,11	4.4,43	5.0,61	5.8.58	6.4,45
20	0.705	1.6 .18	2. 2.94	2.9.58	3.8,16	4.4.51	5.0.74	5.8,77	6. 4,69
21	0.704	1.6.17	2. 2.94	2.9,60	3.8,21	4.4.59	5. 0,85	5.8,93	6.4,91
22	0.7 .04	1.6.17	2. 2,95	2.961	3.8,25	4.4,66	5. 0.95	5.9,08	6.5,10
23	0.7.03	1.6.16	2. 2,95	2.963	3.8.29	4.4,72	5. 1.04	5.9,22	6.5.28
24	0.703	1.6.16	2. 2,95	2.9,64	3.8 .33	4.4,78	5.1.12	5.9,35	6.5.44
25	0.7 .02	1.616	2. 2.96	2.9,66	3.8 .36	4.4 .83	5.1.20	5.9,46	6.5.59
26	0.7 .02	1.6 .16	2. 2,96	2.967	3.8.39	4.4,88	5.1.27	5.9,5 7	6. 5.73
27	0.7 .02	1.6.15	2. 2,96	2.9,68	3.8 .42	4.4.92	5.1.33	5.9.66	6.5.86
28	0.701	1.6.15	2. 2,96	2.9,69	3.8 .44	4.4,96	5.1.39	5.9.75	6.5,98
29	0.7 .01	1.6.15	2. 2,97	2.9,70	3.847	4. 5,00	5.145	5.9.84	6.6.09
30	0.701	1.6.15	2. 2.97	2.9,71	3.8,49	4.5.04	5.1.50	5.9,92	6.6.19
32	0.7 .00	1.6.14	2. 2,97	2.9,72	3.8,53	4.5,10	5.1.59	6.0.06	6.6.37
34	0.7 .00	1.6 .14	2. 2,97	2.974	3.8.56	4.5,16	5.168	6.0,18	6.6 .54
36	0.7 .00	1.614	2. 2,98	2,9,75	-3.8.59	4.5,21	5.1,75	6.0,30	6.6 .68
38	0.699	1.6,14	2. 2,98	2.9.76	3.8.62	4. 5,25	5.1.82	6.0,39	6.6.81
40	0,6,99	1.6 .13	2. 2,98	2.9,77	3.8 .65	4.5.29	5.1 .88	6. 0.48	6.6.92
42	0.6 .99	1.6.13	2. 2.98	2.9,78	3.8 .67	4.5,33	$5.1,93$	6. 0.56	6.7.03
44	0.6 .98	1.6.13	2. 2,99	2.9,79	3.8.69	4.5,36	5.1.98	6.0,64	6.7.12
46	0.6 .98	1.6.13	2. 2.99	2.9,79	3.8,71	4.5.39	5.2,02	6.0,70	6.7 .21
48	0.6 .98	1.6.13	2. 2,99	2.980	3.8,73	4.542	5.206	6.0.76	6.7 .29
50	0.698	1.6 .13	2. 2,99	2.9,81	3.8.74	4.5.45	5. 210	6.0,82	6.7 .36
55	0.697	1.612	2. 2,99	2.9.82	3.8.78	4. 5.50	5. 2,18	$6.0,94$	6.7 .52
60	0.6 .97	1.6.12	2.3,00	2.9,83	3.8,81	4.5 .55	5. 225	6.104	6.7.65
65	0.6 .97	1.6.12	2. 3,00	2.9,84	3.8 .83	4.5 .59	5.231	6.1 .13	6.7 .76
70	0.6.96	1.612	2. 3.00	2.9,85	3.8.85	4.5.62	5.2,35	6.120	6.7.86
75	0.6.96	1.6,12	$2 \cdot 3.00$	2.9,86	3.8.87	4.565	5.2.40	6.127	6.7.94
80	0.6 .96	1.6.11	2. 3,00	2.988	3.8 .89	4.567	5. 2.43	6.132	6. 8,01
90	0.6 .96	1.6.11	2. 3.01	2.9,87	3.8.91	4.5.72	5.2.49	6.1 .41	6.8,13
100	0.6 .95	1.6.11	2. 3.01	2.9,88	3.8 .93	4. 5.75	5. 2.54	6.149	6. 8,22
120	0.695	1.6.11	2. 3.01	2.9,90	3.8,96	4.5 .80	5.2.62	6.1 .60	6.8.37
140	0.6,95	1.6.11	$2 \cdot 3.01$	2.990	3.8,99	4.5884	5. 2,67	6.1.68	6.8,47
160	0.6 .95	1.6.10	2.3.01	2.991	3.9 .00	4.5.86	5. 271	6.174	6. 8.55
180	0.6,94	1.6.10	2. 3.02	2.9,92	3.9,02	4.5,88	$5.2,74$	6.178	6.8,61
200	0.6,94	1.6,10	2. 3.02	2.9,92	3.903	4.5,90	5.2,76	6.182	6.8,65
300	0.6.94	1.6,10	$2 \cdot 3.02$	2.9,93	3.9.06	4. 5,95	5.284	$6.1,93$	6.8,79
500	0.6 .94	1.6,10	$2 \cdot 3.02$	2.9,94	3.9.08	4.5,99	5.290	6.201	6.8,91
∞	0.6 .931	1.6094	2.3,026	2.9,957	3.9,120	4.6 .052	$5.2,983$	6.2146	6.9,078

Watson's Two-sample Test

This test will compare whether or not groups of angles are different from each other, for example, Control vs. Pulsed groups.
To start, we will call the two groups G_{1} and G_{2} with samples sizes n_{1} and n_{2}.
Next, make a table with 5 columns, and list all the angles from smallest to largest. Here is an example:

Angle	Group	a	b	d
15				
20				
23				
52				
65				
160				
176				
191				
217				
280				

Then, in the second column assign the group name, G_{1} or G_{2}, to each angle:

Angle	Group	a	b	d
15	G_{1}			
20	G_{1}			
23	G_{1}			
52	G_{1}			
65	G_{2}			
160	G_{1}			
176	G_{2}			
191	G_{2}			
217	G_{2}			
280	G_{2}			

Next, the third column, column "a" gets a bit tricky. For the first row, count the number of " G_{1} " in the first row of column 2. For the second row, count the number of " G_{1} " in rows 1 and 2 of the second column. For the third row, count the number of " G_{1} " in rows 1-3.... Continue until the column is completed.

Angle	Group	a	b	d
15	G_{1}	1		
20	G_{1}	2		
23	G_{1}	3		
52	G_{1}	4		
65	G_{2}	4		
160	G_{1}	5		
176	G_{2}	5		
191	G_{2}	5		
217	G_{2}	5		
280	G_{2}	5		

Then, repeat the same procedure for the next column, column "b", but count the number of " G_{2} " instead.

Angle	Group	a	b	d
15	G_{1}	1	0	
20	G_{1}	2	0	
23	G_{1}	3	0	
52	G_{1}	4	0	
65	G_{2}	4	1	
160	G_{1}	5	1	
176	G_{2}	5	2	
191	G_{2}	5	3	
217	G_{2}	5	4	
280	G_{2}	5	5	

For each item in the last column, column " d ", enter the result from the equation:

$$
d=\frac{b}{n_{2}}-\frac{a}{n_{1}}
$$

where " b " is the value from column " b " for that row, and " a " from column " a " for that row:

Angle	Group	a	b	d
15	G_{1}	1	0	-0.2
20	G_{1}	2	0	-0.4
23	G_{1}	3	0	-0.6
52	G_{1}	4	0	-0.8
65	G_{2}	4	1	-0.6
160	G_{1}	5	1	-0.8
176	G_{2}	5	2	-0.6
191	G_{2}	5	3	-0.4
217	G_{2}	5	4	-0.2
280	G_{2}	5	5	0

Calculate the mean of the column " d " and the variance:

$$
\begin{aligned}
\bar{d} & =\frac{1}{n_{1}+n_{2}} \sum d=-0.46 \\
v & =\sum(d-\bar{d})^{2}=0.644
\end{aligned}
$$

Finally, we can calculate our test statistic:

$$
U^{2}=\frac{n_{1} n_{2} v}{\left(n_{1}+n_{2}\right)^{2}}=0.161
$$

If $U^{2}>0.187$ then the two groups are significantly different ($\mathrm{p}<0.05$), however, if $U^{2}<0.187$ then the two groups do not differ.

